
Automatic Parameter Tuning via Reinforcement Learning for Crowd
Simulation with Social Distancing

Yiran Zhao and Roland Geraerts

Abstract— Reinforcement learning (RL) has been applied to a
variety of fields such as gaming and robot navigation. We study
the application of RL in crowd simulation by proposing an
automatic parameter tuning system based on Proximal Policy
Optimization (PPO). The system can be used with any crowd
simulation software to improve the quality of the simulation
by automatically assigning parameters to each agent during
the simulation. Our experiments indicate that the automatic
parameter tuning system can reduce unexpected congestions in
counterflow scenarios. In addition, by utilizing the improved
commonly used crowd simulation algorithms and our parame-
ter tunning system, we can represent social distancing behavior
of pedestrians under COVID-19, where pedestrians comply to
the suggested social distance when they have enough space to
move while they reduce their social distances to others when
there is limited space.

I. INTRODUCTION

In the past decade, many crowd simulation algorithms have
been developed to enhance the anticipation of movement and
to come closer to real pedestrian behaviors, such as Density-
based path planning [1], Optimal Reciprocal Collision Avoid-
ance (ORCA) [2], Implicit Crowds [3] and C-nav [4]. To
construct a complete crowd simulation, several algorithms
need to be combined together. From global path planning
to local collision avoidance, a plethora of parameters need
to be tuned carefully according to different scenarios. A
coarse selection of parameters may yield inflexible and
unrealistic behaviors of pedestrian-agents. In most crowd
simulation softwares, a long list of parameters is left for the
user to determine, which is difficult to understand without
professional experiences.

However, even with professional knowledge of the algo-
rithms, it is hard to manually choose the best parameter
combination for every simulation at each simulation step.
For example, the social distance is a crucial factor for
crowd simulation under COVID-19. In real life, pedestrians
have initiatives to obey the social distance rule such as
maintaining 1 m to 2 m distance in most countries. But
the degree of compliance differs from their surrounding
situations. Pedestrians tend to reduce their social distances
from others when they see a high crowd density [5] [6]
or counterflow [7]. Unfortunately, due to lack of a robust
social distance simulation model, most simulations either
completely ignore the active social avoidance or treat the
social distance as a stiff constant under all situations [8]
[9] [10] [11] [12], which may not represent the flexible
pedestrian behavior correctly.

The authors are with the Department of Information and Computing
Sciences at Utrecht University, Princetonplein 5, Utrecht, the Netherlands.
Email: zhaoyiran182@gmail.com, r.j.geraerts@uu.nl

Inspired by reinforcement learning methods applied in
local motion planning in recent years [13] [14] , we propose
an auto-parameter tuning approach based on the Proximal
Policy Optimization algorithm [15]. This approach can assign
parameters, including the social distance preference, for the
simulated agents dynamically according to their goals, posi-
tions, velocities and surrounded crowd densities. By utilizing
reinforcement learning, the approach can assign parameter
values to the simulated agents at each assigning step (1
second). In contrast to the existing parameter fitting methods
[16] [17] [18], which only give one global and static optimal
parameter set, our method offers dynamic parameter fitting
for each agent constantly. Such a flexibility is beneficial for
tunning some sensitive parameters such as “personal space”
in the collision avoidance algorithm, which may vary at
different places in one scenario. Our experiments indicate,
compared to simulations with manually assigned parameters,
that our approach generates more energy-efficient behaviors
[19] with less travelling time and less congestions.

Our main contributions are: 1) a general deep reinforce-
ment learning framework to automatically and dynamically
tune the parameters for any simulation scenario, giving
more intelligent simulation results, and 2) a specific model
for simulating the social distancing behavior of pedestrians
under COVID-19, based on Density-based path planning [1],
Optimal Reciprocal Collision Avoidance (ORCA) [2], Social
Groups Navigation (SGN) [20] and our automatic parameter
tuning system.

II. RELATED WORK

Crowd simulation is a technique to simulate real pedes-
trians walking via controlling motions of virtual agents,
which has been applied in flow control, risk evaluation and
gaming fields. To improve the collision anticipation and
to reduce the unexpected congestions, the Density-based
path planning algorithm [1] and the ORCA algorithm [2]
have been proposed. The combination of these two methods
gives convincing motions that are smooth and collision-
free. Social grouping is another important factor in crowd
simulation. Family members, couples and friends walking
together usually form a social group. A social group model,
SGN, proposed by Jaklin et al. [20], simulates groups in both
global path-planning and local collision-avoidance levels.
The algorithm shows socially-friendly group navigation, with
flexibility of group member movement.

Several papers related to simulating crowds under the
COVID-19 pandemic have been published. In papers [10]
[11] and [12], the authors estimate the social exposure via



considering the physical contact and the distances between
simulated agents. These methods have a common limitation
in which the initiative of social avoidance is not taken into
account. In the pandemic time, most people try to keep a
safe social distance from others [6]. The above models may
lose correctness to simulate the pedestrians movements under
COVID-19. On the other hand, some simulations such as [8]
and [9] adopt a constant social distance such as 1 m or 1.5 m,
ignoring the social distance preferences of pedestrians under
different situations, while pedestrians intend to reduce their
social distances when they encounter a dense crowd [5] [6]
or a counterflow [7] in real life.

Reinforcement learning is developing rapidly in recent
years. There are several algorithms of path planning and
collision avoidance based on reinforcement learning have
been proposed. Socially Adaptive Path Planning [14] was
developed for a robotic vehicle planning socially adaptive
paths in dynamic environments. This was done by learning
an optimal trajectory by following experts with an inverse
reinforcement learning procedure, and integrating the local
plan to the global planed path. The IMARL [21] algorithm
gives a combination of a multi-agent reinforcement learning
process and an improved social-force model. However, the
existing approaches always focus on only one aspect of
steering. They can be advanced alternatives for collision
avoidance or path planning, but they are difficult to integrate
into a complete crowd simulation framework. For setting up a
complex simulation, a user still needs to tune the parameters
carefully.

Our method gives a general system for training a scenario
by automatic and dynamic parameter tuning, which can be
easily combined with existing crowd simulation frameworks.
Without knowing the details of each algorithm of the crowd
simulation, our method can find a proper solution for a
scenario that optimizes the travelling time of agents, i.e., the
time that agents need to reach their goals. Among the various
reinforcement learning algorithms, we select Proximal Policy
Optimization (PPO) [15] as the training policy for our
automatic parameter tunning system because it can deal with
the continuous state and action spaces, updates the policy
quickly and shows general feasibility.

III. AUTOMATIC PARAMETER TUNING SYTEM

In this section, we introduce our automatic parameter
tuning system. The system is a centralized system, which
gathers information of all simulated agents and gives a global
optimal solution. At each parameter assigning step (usually
1 second), the system assigns a set of parameters for each
simulated agent according to its properties and surrounded
environment. Any tunable parameter in the simulation can
be trained with this system, such as the agent speed and
the agent visual field. We show an application example in
Section IV, where the parameter of planning density weight
and a parameter related to collision avoidance radius are
trained to simulate the social distancing behavior realistically.

The automatic parameter tuning system is modelled as a
standard reinforcement learning problem, where in a step

t, state st of each simulated agent is sent to the system as
input, and a mapped policy πq(at|st) for each tunable crowd
simulation parameter q is calculated by the system and then
sent back to the agent. The policy πq(at|st) represents a
probability density function of action at given st. Applying
a sampled value from the policy to the parameter, the system
responds with a new state st+1 and an immediate reward rt+1

in the next step t + 1. The goal of the training is that the
system maximizes the cumulative reward of the corresponded
parameter, called return R, via improving a policy gradually.

Let’s denote the set of all tunable parameters in the
crowd simulation as Q. For each tunable parameter q ∈ Q,
we use an independent network to represent πq and an
independent memory buffer to store collected states, actions,
rewards, etc. Instead of applying the policies to the agents
every simulation execution step L (typically 0.1 second),
the system only runs the policies with a specified period
Lrun (usually 1 second), where Lrun is a multiple of L.
The policies are trained by using a policy-gradient method,
named PPO [15], in the end of each episode with period
Lepisode (Lepisode > Lrun), and then the simulation restarts.
The general structure of the system is shown in Algorithm
1.

Algorithm 1 Automatic parameter tuning

t← Lrun

while simulation not end do
if t ≥ Lepisode then

for all q in Q do
Calculate advantages
Optimize policy πq
Clear replay buffer Bq

end for
Restart simulation
t← 0

end if
if t mod Lrun = 0 then

for all q in Q do
Run policy πq
Update replay buffer Bq

end for
end if
Perform simulation
t← t+ 1

end while

A. State and Action

The state st represents the configuration of an agent
and the information of its surrounding environment at step
t. Considering the common features among most crowd
simulation frameworks, state st of an agent is composed of
the present position pt, the goal position gt, the velocity vt,
the surrounding crowd density dt, the number of surrounding
neighbors ot, and the values of all tunable parameters kq,t,
where the widely ranged variables such as positions are
standardized to [−1, 1].



The states of agents are shared between tunable parameters
policy networks. The action a(st), sampled from the policy
πq(at|st) specifies the scalable value of parameter q for state
st. For example, the value of the speed qsa of an agent ranges
from 0 to the maximum speed s0. When we require a value
of qsa for state st, we sample a value a(st) from the beta
distribution of the qsa policy (ranged from 0 to 1), and then
assign a(st) · s0 to the parameter qsa.

B. Reward and Advantage estimator
Reward r(st, a(st), st+1) represents the result of trans-

ferring from state st to st+1 via action a(st) at step t.
According to the principle of least effort, the simulated
pedestrians should avoid unnecessary detours and travel with
short and fast paths [22] [23]. The simplest reward function
is r(st, a(st), st+1) = −1 when one agent does not reach
its goal. It can encourage a shorter travelling time from the
departure position to the destination position of an agent. We
can also take the social collision into account, as discussed
in Subsection IV-B.

With rewards of agents in an episode, we can estimate
the advantage At of taking an action a(st) at step t, which
is a measure of how much is a(st) a good or bad decision
compared with the expected return of st. That can be done
by the equations in reference [15].

C. Neural network
A standard actor-critic architecture of the network is

applied in our approach [24]. For each tunable parameter
q, we build two networks. In both networks, the states are
processed with two fully-connected layers with 512 and 256
units, respectively. The ReLu activation function is used
following each fully-connected layer. The output layer of the
critic network has only one unit, which of the actor network
contains one or two units. The policy distribution can be a
Gaussian distribution (a ∈ (−∞,∞)), a gamma distribution
(a ∈ (0,∞)) or a beta distribution (a ∈ (0, 1)). Empirically,
both α and β (µ and σ) in the Gaussian and beta distribution
can be trained, while we only train α in gamma distribution
and set β to constant 1.0.

D. Replay buffer and Learning Policy
Compared with a single robot or agent, which has been

intensively studied in the Robotics field, a plethora of agents
in a crowd simulation offers abundant experience to learn
within an episode. Since tracking the trajectories of every
agent is too expensive, we limit the replay buffer size to Nc

and only track the first Nc agents in the scene. Therefore, the
replay buffer is naturally divided into maximum Nc batches,
where each batch contains data of one agent during the
episode. At step t, the system applies the policy of each
tunable parameter q to each agent. The state st, the action
a(st), the reward rt, the reached goal flag ηt, the output
value of the critic network V (st), and the logarithm of the
action probability density ρ(a(st)) are collected and pushed
into the corresponding batch in the memory buffer.

The policies are trained by the PPO method, with a clipped
surrogate objective. In each training step, we optimize the

critic and actor networks with batches in the replay buffer.
The loss function of the ith iteration is the combination of the
expectation of the critic loss, the actor loss and the entropy,
as explained by [15]. When optimizing the loss, the policy
gradually approaches the optimum and the estimation of a
state becomes increasingly precise.

IV. SIMULATING THE SOCIAL DISTANCING

Our goal is simulating the pedestrian behavior under a
pandemic. While pedestrians are aware of complying to the
social distance and still want to reach their goals as soon as
possible, no approach can model the behavior to our knowl-
edge. A much larger personal space than normal undoubtedly
increases the difficulty of the simulation since unexpected
congestions are easier to occur. For reducing congestions and
modelling social groups, we apply and modify the following
algorithms: Density-based path planning [1], ORCA [2] and
SGN [20]. On the basis of the algorithms, we leverage the
automatic parameter tuning system to train the parameters
with two rewards: reaching the goal in a short time and
complying to the social distance.

A. Representing the social distancing

For agent A, ORCA uses the sum of the body radii
(RA + RB) of agent A and B to construct the velocity
obstacle between the agents. With the velocity obstacle,
ORCA can select the best velocity for A to avoid collisions.
Moreover, ORCA also uses the body radius to check the
existing collisions and gives a velocity to evacuate from
the collision. In our simulation, we replace RA + RB with
RA+ψA+RB , where ψA is the social distance preference of
A. So agent A can try to avoid “social collision” or try to get
out of the “social collision” with B. The replacement is only
applied when A and B are not in the same social group. In
such a group, the members can always stay closer than other
pedestrians and do not have the extra collision-avoidance
distance. In our implementation, the social coherence is done
by SGN. It should be noted that ψA is the social distance
preference of A rather than the suggested social distance Ψ
(like 1.5 m and 2 m). The social distance preference ψ is a
trained parameter in the automatic parameter tuning system,
with ψ ∈ (0,Ψ).

B. Training the simulation

We train the social distance preference ψ and the density
weight ω via the automatic parameter tuning system and
keep other parameters constant. As explained in Subsection
IV-A, the social distance preference ψ is the extra collision-
avoidance distance for an agent at a moment. We want this
value to be as close as possible to the suggested social
distance Ψ, and keep flexibility for the agent to pass through
a crowded area in a short time. Otherwise, if all agents
insisted on complying to the suggested social distance, the
path would be completely blocked and no one could pass.
The policy of ψ is a beta distribution in which we train
both α and β. Then a sampled value a(st) ∈ (0, 1) from
the distribution can be used to represent ψ(st) via ψ(st) =



Ψa(st). We consider both the travelling time and the social
collision in the reward function:

r(st, a(st), st+1) = −1− ξ · o(st), (1)

where ξ is a constant during the training, representing the
social distance awareness of the crowd. A high value of ξ
yields the crowd complying to the social distance, while a
low value of ξ represents a small collision avoidance radius
so the agents have more freedom to move. o(st) is the
number of visible (usually represented as a 180-degree view
cone) neighbors who locate inside the social radius of the
agent. In this equation, −1 encourages an agent to reach its
goal in a shorter time, and −ξ · o(st) encourages the agent
to keep a social distance from its visible neighbors.

Except for the social distance preference, we train the
policy of the density weight as well. The density weight
ω is a parameter in the Density-based path planning method.
When the simulator plans a global path for an agent on the
navigation mesh, it calculates the cumulative cost of edges
with ω, then the path with the minimum cost will be selected.
We adopt a gamma distribution with trainable α and fixed
β = 1 for the density weight parameter.

V. RESULTS

A. Counterflow

Counterflow is a typical pedestrian movement pattern.
Literally, pedestrians moving in opposite directions form
a counterflow, with spontaneous features such as lane-
formation [25]. It is adopted as a benchmark scenario in
the evacuation verification standard [26]. Compared with a
one-directional movement scenario, a counterflow scenario is
more challenging for a collision-avoidance method. Plenty
of collision-avoidance algorithms leverage a counterflow
scenario to verify their robustness [22] [27] [28].

We built a counterflow scenario which contains two square
rooms (25m x 25m) connected with a bridge of 5m width.
The start and goal positions are sampled randomly from
two areas inside the rooms. After the simulation starts,
100 simulated pedestrians in each room move towards the
opposite room with given pairs of start and goal positions.
Based on the calculated global navigation mesh, we can
either adopt the shortest path or the side preference route
selection algorithm. The former finds the shortest path for
each agent, but in the counterflow scenario, it results in an
expected congestion because every agent selects the upper
part of the bridge. The side preference method relies on the
shape of each cell in the navigation mesh. A side preference
value in the range [−1, 0) yields agents preferring the left
side and a value in the range (0, 1] represents the right side.
The side preference method can help to reduce the congestion
on the bridge. However, agents need to detour in the rest part
of the scenario. With the automatic parameter tuning system,
we can make agents move with short paths in the rooms and
form bidirectional lanes on the bridge, via only training the
side preference parameter. The policy distribution of the side
preference parameter is a beta distribution with trainable α
and β, and the episode is set to 180 seconds.

(a) side preference 0.5 + ORCA (b) side preference 0.35 + ORCA

(c) shortest path + ORCA (d) automatic parameter + ORCA

(e) shortest path + IC (f) shortest path + SGN

Fig. 1: Trajectories at 40 s in the counterflow scenario in
the six sub-scenarios. A blue trajectory represents an agent
moving from Area A to Area B. As a contrast, a red trajectory
is generated from an agent moving from Area B to Area A.

To compare the simulation results, six sub-scenarios were
constructed. The first four sub-scenarios apply ORCA algo-
rithm, i.e., (a) with the side preference path planning and a
constant preference value of -0.5; (b) with the side preference
path planning and a constant preference value of 0.35; (c)
with the shortest path planning; (d) with the side preference
path planning and dynamic preference values produced by
the trained policy (trained by 5000 episodes). Sub-scenario
(e) and sub-scenario (f) adopt the shortest path planning,
while the former applies the Implicit Crowds (IC) collision
avoidance [3] and the latter applies the Social Groups and
Navigation (SGN) collision avoidance [20].

We ran each sub-scenario for 50 times and get the mean
travelling time of the agents. The mean travelling time in sec-
ond of the six sub-scenarios are 58.85, 55.99, 83.01, 45.05,
52.01 and 297.89, respectively. The trajectories at 40 s are
shown in Figure 1. The result indicates the shortest travelling
time and an emergent lane-formation agent behavior with the
automatic parameter method, which combines the advantages
of the shortest path and the side preference methods. This
allows agents to pass through the bridge quickly and to
follow short paths as well.

In conclusion, the automatic parameter tuning method
brings variable side preference to the simulation, helping to
solve the typical counterflow problem of the crowd simula-
tion.

B. Crowd with social distancing

In this subsection, we simulated a small scenario that
people cross the bridges to reach the opposite land (Figure
2). There is an obstacle in the left side and a pair of
obstacles shaped as a gate in the right side. In the scenario,
80 agents are generated from Area A with a generation rate
of 10 agents per second. Then they move to Area B and
finally reach Area C. The generation and goal positions are
randomly sampled from the areas. Among the 80 agents, 40



agents form 2-person groups and the remainder move indi-
vidually. The goal of an agent is reaching the goal position
as soon as possible, keeping a social distance from others
and minimizing the social collision. Agents are expected to
comply to the social distance of 1.0 m most of time while
squeezing their social spaces in the narrow bridges to shorten
the travelling time.

Fig. 2: Layout of the social distancing scenario

We trained both the density weight and the social distance
preference parameter for the scenario for 5000 episodes.
The policies of the density weight and the social distance
preference are explained in Section IV-B, in which the social
distance awareness ξ, an extra punishment of the social
distance preference reward, is set to 1.0 and the episode is
set to 240 s.

We compared two types of simulations. One simulation
type uses the automatic parameters while another simulation
type uses constant parameters. Both types of simulations
apply ORCA. There are 9 scenarios constructed with the
constant parameters. To measure the effect of social distanc-
ing, we counted the social collision times by summing the
number of all neighbors of each agent, who are visible for
the agent and socially collided with the agent, during the
whole simulation. We ran each simulation 50 times. The
constant density weight is noted as qdw, and the constant
social distance preference is noted as qdp. In Table I, we
show the mean travelling time and the mean social collision
times in the constant parameter scenarios, where we observe
that the travelling time increases as the social distance
preference increases, and the social collision times is never
smaller than 50000. However, with the automatic parameters,
the mean travelling time is 102.01 seconds and the mean
social collision times is only 32368.1, giving the agents a
reasonable balance between shortening the travelling time
and complying to the social distance. The screenshots of
the simulations are presented in Figure 3 and Figure 4,
where the agents who have zero, one, two, and at least
three social collisions with their visible neighbors are colored
in white, yellow, orange, and red, respectively. Figure 3
shows the comparison between simulations with three sets
of constant parameters and the simulation with automatic
parameters at 60 s. It can be observed that the scenario with
automatic parameters have less social collisions. Figure 4
shows the difference between the simulation with a big social
distance preference and the one with automatic parameters
at 90 s. In the former simulation, agents form an unexpected
congestion in front of the gate-shaped obstacles, while in the
latter simulation, agents do not have the trouble of passing
through the obstacles. Because of the dynamic parameter

qdw = 0 qdw = 30 qdw = 100

qdp = 0.01 84.95 / 143676 82.49 / 116530 84.89 / 89101.4
qdp = 0.3 91.63 / 96196.1 87.25 / 74596.2 90.31 / 69715.4
qdp = 0.8 105.57 / 54737.2 123.11 / 77020 118.25 / 57904

TABLE I: Simulation results of combination between the
constant density weight and the constant social distance
preference. The number on the left of a cell is the mean
travelling time in seconds and the number on the right of a
cell is the mean social collision times.

selection, our approach can find a nearly optimal solution
under different crowd situations.

Our experiment reveals, via the automatic parameter tun-
ing, that the simulated social distancing is more energy-
efficient than only using the constant parameters. It can
simulate the initiative of pedestrians to comply to the social
distance, as well as violating the social distance when the
crowd density is high.

(a) qdw = 0, qdp = 0.01 (b) qdw = 30, qdp = 0.3

(c) qdw = 100, qdp = 0.8 (d) automatic parameters

Fig. 3: Agents in the social distancing scenarios at 60s.

(a) qdw = 100, qdp = 0.8 (b) automatic parameters

Fig. 4: Agents in the social distancing scenarios at 90s.

VI. CONCLUSION

We presented an automatic parameter tuning system for
applying dynamic parameters in crowd simulation, based
on the reinforcement learning algorithm Proximal Policy
Optimization (PPO). Such a framework can easily be em-
bedded in a complex crowd simulation software, solving
the problem of unexpected congestions and reducing the
travelling time. Moreover, to simulate the social distancing
behavior of crowds under the COVID-19 pandemic, we
extended existing crowd simulation algorithms, i.e., Density-
based path planning, Optimal Reciprocal Collision Avoid-
ance (ORCA) and Social Groups and Navigation (SGN).



Next, we combined the algorithms with the automatic param-
eter tuning system. Experiments indicated that the automatic
parameter tuning method can represent the crowd behavior
more energy-efficient than the traditional constant parameter
methods, in respect of resolving congestions in counterflow
and simulating social distancing.

Although the experiments illustrated the ability of the
framework of enhancing the crowd simulation performance,
there are still some limitations: 1) the method has only been
validated via small crowd simulation scenarios, but not big
scenarios with thousands of agents; 2) training multiple poli-
cies with different reward functions may yield an unstable
training process which requires a long converging time; 3) for
training the social distance preference, the hyperparameter
social distance awareness should be wisely chosen. A too
big or too small value will lead to long training time.

Our main objective of future work is representing the
state of an agent in a more abstract way and increasing the
universality of the trained policies. It would be interesting
that we can train a policy for one scenario and apply the same
policy for other scenarios. Besides, we wish to validate the
simulation result via the automatic parameter tuning method
by real-world experiments.

REFERENCES

[1] W. G. Van Toll, A. F. Cook IV, and R. Geraerts, “Real-time density-
based crowd simulation,” Computer Animation and Virtual Worlds,
vol. 23, no. 1, pp. 59–69, 2012.

[2] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Optimal
reciprocal collision avoidance for multi-agent navigation,” in Proc.
of the IEEE International Conference on Robotics and Automation,
Anchorage (AK), USA, 2010.

[3] I. Karamouzas, N. Sohre, R. Narain, and S. J. Guy, “Implicit crowds:
Optimization integrator for robust crowd simulation,” ACM Transac-
tions on Graphics (TOG), vol. 36, no. 4, pp. 1–13, 2017.

[4] J. Godoy, S. J. Guy, M. Gini, and I. Karamouzas, “C-nav: Distributed
coordination in crowded multi-agent navigation,” Robotics and Au-
tonomous Systems, vol. 133, p. 103631, 2020.

[5] L. S. Liebst, P. Ejbye-Ernst, M. de Bruin, J. Thomas, and M. R.
Lindegaard, “Mask-wearing and social distancing: Evidence from a
video-observational and natural-experimental study of public space
behavior during the covid-19 pandemic,” 2021.

[6] C. A. Pouw, F. Toschi, F. van Schadewijk, and A. Corbetta, “Monitor-
ing physical distancing for crowd management: Real-time trajectory
and group analysis,” PloS one, vol. 15, no. 10, p. e0240963, 2020.

[7] T. Blanken, C. Tanis, F. Nauta, F. Dablander, B. Zijlstra, R. Bouten,
Q. Oostvogel, M. Boersma, M. van der Steenhoven, F. van Harreveld
et al., “Smart distance lab: A new methodology for assessing social
distancing interventions,” 2020.

[8] S. Comai, S. Costa, S. M. Ventura, G. Vassena, L. Tagliabue, D. Sime-
one, E. Bertuzzi, G. Scurati, F. Ferrise, and A. Ciribini, “Indoor mobile
mapping system and crowd simulation to support school reopening
because of covid-19: a case study,” The International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 44, pp. 29–36, 2020.

[9] Á. G. García, A. Caciagli et al., “Crowd control in plazas constrained
to social distancing,” arXiv preprint arXiv:2005.07038, 2020.

[10] T. Harweg, D. Bachmann, and F. Weichert, “Agent-based simulation
of pedestrian dynamics for exposure time estimation in epidemic risk
assessment,” arXiv preprint arXiv:2007.04138, 2020.

[11] E. Ronchi and R. Lovreglio, “Exposed: An occupant exposure model
for confined spaces to retrofit crowd models during a pandemic,” Safety
Science, vol. 130, p. 104834, 2020.

[12] Y. Xiao, M. Yang, Z. Zhu, H. Yang, L. Zhang, and S. Ghader, “Mod-
eling indoor-level non-pharmaceutical interventions during the covid-
19 pandemic: a pedestrian dynamics-based microscopic simulation
approach,” arXiv preprint arXiv:2006.10666, 2020.

[13] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[14] B. Kim and J. Pineau, “Socially adaptive path planning in human envi-
ronments using inverse reinforcement learning,” International Journal
of Social Robotics, vol. 8, no. 1, pp. 51–66, 2016.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[16] G. Berseth, M. Kapadia, B. Haworth, and P. Faloutsos, “Steerfit:
Automated parameter fitting for steering algorithms,” in Simulating
Heterogeneous Crowds with Interactive Behaviors. AK Peters/CRC
Press, 2016, pp. 229–246.

[17] D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and
J. Pettré, “Parameter estimation and comparative evaluation of crowd
simulations,” in Computer Graphics Forum, vol. 33, no. 2. Wiley
Online Library, 2014, pp. 303–312.

[18] A. Binch, G. P. Das, J. P. Fentanes, and M. Hanheide, “Context de-
pendant iterative parameter optimisation for robust robot navigation,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 3937–3943.

[19] G. K. Zipf, Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books, 2016.

[20] N. Jaklin, A. Kremyzas, and R. Geraerts, “Adding sociality to virtual
pedestrian groups,” in Proceedings of the 21st ACM Symposium on
Virtual Reality Software and Technology, 2015, pp. 163–172.

[21] Q. Wang, H. Liu, K. Gao, and L. Zhang, “Improved multi-agent
reinforcement learning for path planning-based crowd simulation,”
IEEE Access, vol. 7, pp. 73 841–73 855, 2019.

[22] I. Karamouzas, P. Heil, P. Van Beek, and M. H. Overmars, “A
predictive collision avoidance model for pedestrian simulation,” in
International workshop on motion in games. Springer, 2009, pp.
41–52.

[23] S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. C. Lin, and
D. Manocha, “Pledestrians: A least-effort approach to crowd simu-
lation.” in Symposium on computer animation, 2010, pp. 119–128.

[24] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2018.

[25] T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, and M. Schreck-
enberg, “Experimental study of pedestrian counterflow in a corridor,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2006,
no. 10, p. P10001, 2006.

[26] E. Ronchi, E. D. Kuligowski, P. A. Reneke, R. D. Peacock, and
D. Nilsson, The process of verification and validation of building fire
evacuation models. US Department of Commerce, National Institute
of Standards and Technology . . . , 2013.

[27] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[28] Y. Tajima, K. Takimoto, and T. Nagatani, “Pattern formation and
jamming transition in pedestrian counter flow,” Physica A: Statistical
Mechanics and its Applications, vol. 313, no. 3-4, pp. 709–723, 2002.


